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An Investigation of the Standard Errors of Expected A Posteriori

Ability Estimates

ABSTRACT
Expected a posteriori (EAP) has a number of advantages over maximum likelihood estimation
(MLE) or maximum a posteriori (MAP) estimation methods. These include ability estimates
(6s) for all response patterns including zero and perfect score patterns, less regression
towards the mean than MAP ability estimates, and an average squared error that is less than
that for MAP and MLE 8s. Bock and Mislevy (1982) state that the posterior standard deviation
(PSD(@)) is virtually interchangeable with the standard error (SEE). A typical criterion for
terminating an adaptive test is when the §'s SEE is equal to or less than a predetermined
value. However, if there are conditions in which the PSD(@) is not interchangeable with the
SEE, then the adaptive test may not be validly terminated. Moreover, in applications where an
examinee must be classified on the basis of his/her ability estimate (e.g.., as a master versus
nonmaster) one typically creates a confidence interval about the examinee's ability estimate
using the 6's SEE. The use of the PSD(@) in these situations may lead to incorrect
classifications if the PSD() does not agree with the SEE. Results of this Monte Carlo study
showed that the use of 10 quadrature points tends to result in PSD(§)s which underestimate
the observed standard error. The use of 80 quadrature points, given the test's length

(possibly 2 *\ test length quadrature points under certain conditions), is recommended where

accurate PSD(@)S are required.




Item response theory (IRT) has emerged as a popular approach for solving various
measurement problems, such as test design, test equating, and computerized adaptive testing
(CAT), and IRT techniques are becoming more common in practical testing situations. For
example, cértification boards such as the American Society of Clinical Pathologists have
established an IRT-based CAT system for certification (Bergstrom & Lunz, 1991). Unlike the
conventional paper-and-pencil test in which an examinee, regardless of ability, is administered
all test items, CAT is a procedure for administering tests that are individually tailored for each
examinee. Advantages of IRT-based CAT over paper-and-pencil testing have been well
documented (e.g., Wainer, 1990: Weiss, 1982). Although not necessary, a CAT system typically
uses an IRT model in combination with item characteristics to estimate the examinee's ability.

Ability estimation in CAT has typically used one of three methods: maximum likelihood
estimation (MLE) or Bayesian approaches such as maximum a posteriori (MAP, also known as
Bayes Modal Estimate) and expected a posteriori (EAP, also known as Bayes Mean Estimate). The
former two algorithms are iterative techniques, while EAP is noniterative and is based on
numerical quadrature methods. Because it is noniterative (and efficient) it is potentially faster
than either MLE or MAP in ability estimation. The obvious implication of EAP's efficient
estimation for CAT is the transparency (as far as the examinee is concerned) of estimating the
examinee's ability in real time, particularly with more complicated IRT models (e.g., polytomous
IRT models). Moreover, unlike MLE ability estimates, EAP ability estiinates may be obtained for
all response patterns, including zero and perfect score patterns (Mislevy & Stocking, 1989).
While MAP ability estimates also exist for all response patterns, they suffer from greater
regression towards the mean than do the EAP estimates (Bock & Mislevy, 1982; Mislevy & Bock,
1982). Moreover, in the early stages of an adaptive test the EAP estimate is more stable than the
MAP estimate and the average squared error for EAP estimates over the population of ability is
less than that for MAP and MLE ability estimates (Bock & Mislevy, 1982). From an
implementation perspective, an additional advantage is the simplicity of the mathematics
required for deriving the computational forms for ability estimation with polytomous IRT models.

The EAP estimate (Bock & Mislevy, 1982) of an examinee's ability, 8, after n items have been

administered is given by

q
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and its posterior standard deviation is
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PSD(#) =

q
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where Xk is one of q quadrature points, A(Xk) is the quadiature weight associated with Xk, and
Ln(Xk) is the likelihood function of X given the response pattern {xi, x3, ..., xn}. For example, if
the probability of a correct response by an individual with ability @ to a dichotomously score item i

with location b; is given by the one-parameter logistic (1PL) model

e(8 - b))

then the likelihood of 6 given the response pattern {xj, X2, ..., Xp} is

n - -
Ln(®) = [T p(xi = 118)*i(1 - p(xj = ney)d - %) (4)
i=1

The Xks and A(Xk)s may be obtained from tables provided by Stroud and Secrest (1966) for

approximating the Gaussian error function. The Stroud and Secrest Gauss-Hermite Xgs and A(Xy)s

1
must be multiplied by ‘/—2_ and T (Bock & Lieberman, 1970), respectively, in order to place them
T

on the normal function scale. However, programs, such as BILOG (Mislevy & Bock, 1982), do not use
the Stroud and Secrest values for EAP ability estimation; neither BILOG nor MULTILOG (Thissen,
1988) use these values for obtaining item parameter estimates via marginal maximum likelihood
estimation (MMLE). Rather, a specified range of the 8 continuum (e.g., -4.0 to 4.0) is divided into q
equidistant discrete points (these points serve as the Xks) and the standard unit normal

probability density is computed at each of the q points. The probability density at Xy mulitiplied
by the difference between successive quadrature points (e.g., Xk - Xk+1) is the quadrature weight
A(Xg). Because of the symmetric nature of the discrete prior distribution the A(Xk)s only need to
be calculated for the Xgs < 0. (Seong (1990a) refers to this method as the "Mislevy histogram"
technique, although it is probably more accurate to refer to it as the Mislevy "vertical line graph"
method to emphasize the discrete nature of the prior distribution.) Seong (1990a) has compared the
item and ability parameter estimates obtained by using. this latter technique with those obtained by
the Stroud and Secrest values. Seong found that when a large number of quadrature points were
used (e.g., 30 or 40) the two methods estimated item and ability parameters equally well, but when
a small number of quadrature points were specified (e.g., 10), the Mislevy histogram solution
estimated item and ability parameters more accurately than the Gauss-Hermite quadrature formula.

It should be noted that Bock and Mislevy (1982) state that the Gauss-Hermite values do not include
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the likelihood functions found in adaptive testing. Moreover. the Xks and A(Xk)s must satisfy the
constraints that > A(Xk) = 1.0, X, XkA(Xk) = 0.0, and ZX%A(XK) = 1.0.

Bock and Mislevy's (1982) work showed that EAP produces reasonably accurate ability
estimates. Originally, Bock and Mislevy presented EAP for use in adaptive testing, however in the
calibration program BILOG (Mislevy & Bock, 1982) it is the default ability estimation approach.
In adaptive testing the PSD(@) plays the same role as the MLE's standard error (Bock & Mislevy,
1982). That is, after 20 items the likelihood function and the posterior distribution are nearly
identical and the PSD(@) is virtually interchangeable with the standard error (Bock & Mislevy,
1982); this interchangeability is reflected in the fact that the PSD(8)s are labeled as standard
errors in the BILOG EAP output. For consistency with and on the basis of Bock and Mislevy
(1982), the EAP PSD(@) will be referred to as if it were a standard error and will be labeled as
EAP SEE in the following.

A number of studies have investigated the effects of various factors on MMLE item parameter
estimation (e.g., Drasgow, 1989; Harwell & Janosky, 1991; Zwinderman & van der Wollenberg,
1990). Seong (1990b) evaluated both item parameter estimation and EAP ability estimation. With
respect to EAP 6s, Seong found that increasing the number of quadrature points from 10 to 20
produced more accurate fs, regardless of sample size and appropriateness of the prior
distribution (i.e., normal, positively and negatively skewed). Because abilities are estimated
independently of one another it is not surprising that sample size did not have a significant effect
on the accuracy of EAP 6s Because of the breadth of Seong's study, the EAP estimation findings
were limited. For instance, test length should affect ability estimation, but was held fixed at 45
items in Seong's study. Moreover, Seong studied the accuracy of the 6s in terms of root mean
square error (not EAP SEE), but in applications where an examinee must be classified on the basis
of his/her ability estimate (e.g., as a master versus nonmaster) one typically creates a confidence
interval about the examinee's ability estimate using the §'s SEE. As an example, in the American
Society of Clinical Pathologists’ CAT pathologists are presented an adaptive certification test. If
the confidence interval for an examinee falls either completely above or completely below the cut
point, then the examinee may be classified as a master (i.e., certified) or a nonmaster,
respectively. If the confidence interval spans the cut point, then additional information is
needed (e.g., more test questions could be asked). The use of confidence intervals incorporates
our uncertainty about the ability estimate. It should also be noted that in addition to using the
EAP PSD(®) as if it was a standard error, the PSD(§) calculated by (2) is actually an estimate or an
approximation and its use for forming confidence intervals may be problematic if the EAP SEE is
not accurate. Moreover, a typical criterion for terminating an adaptive test is when the §'s SEE is

equal to or less than a predetermined value. If the EAP SEE is not accurate, then the adaptive test




may not be validly terminated. For these reasons this study was primarily concerned with the

validity of the EAP SEEs.

Because EAP is based on numerical quadrature methods it requires the specification of a
number of factors, such as type of prior distribution and the number of quadrature points to
use in estimation. Each of these factors as well as the test length and the form of the examinees'
latent distribution may affect the accuracy of the EAP ability estimate and the EAP SEE. This
study investigated the effects of the number of quadrature points (10, 2%\ test length, and 80),
test length (61 and 122 items), latent ability distribution (bimodal, normal, positively skewed,

and uniform), and the form of the prior ability distribution (normal and uniform) on the EAP

SEEs. The 2*‘]?&:_st_l'ength and 80 number of quadrature point levels were chosen because
2%\ test length is the default value in BILOG for EAP estimation (a normal prior is also default)
and according to Bock and Mislevy (1982, p. 433) "In applications to real populations, perhaps
80 quadrature points between +4.0 standard deviations shtould be available to insure precision
down to P€ 3 = 0.2" (although for their simulation they used 21 quadrature points). A bimodal
latent ability distribution was used to simulate an examinee population that consists of masters
and nonmasters, and the rationale for the test lengths is presented below.

METHOD
Program: A program was written for generating simulees, generating the responses for each
simulee, performing ability estimation for each simulee, and compiling various summary
statistics for each simulee as well as across simulees.
Data. For each of the 4 latent distributions, 100 simulees were sampled from the appropriate 6
distribution. Then for each simulee at each combination of test length, prior distribution and
quadrature points, the process of administering a simulated test, as described below, was
repeated 1000 times. The standard unit normal curve was used as the 6 distribution for the
normal condition, a beta distribution (v] = 1.25, v = 10) was used to produce the positively
skewed © distribution (skew = 1.14), and the uniform 6 distribution was restricted to the range -
3.0 £ 8 < 3.0. The bimodal 6 distribution was obtained by generating one-half the sample's
simulees from a beta distribution with vy = 1.25 and v2 = 10 and one-half from a beta distribution
with v] and v2 transposed. [Each latent ability distribution had a unique seed for generating its
simulees.

A sixty-one item pool was generated to have uniform difficulty parameters (b) in the range -
30 < b < 3.0 in 0.1 logit increments (i.e., b} = -3.0, b2 = -2.9, etc.). The discrimination (a) and
the pseudo-guessing (c) parameters were set at 1.0 and 0.0, respectively. The use of these values
for a and ¢ is discussed beluw. The 122-item test consisted of the 61-item test replicated and

therefore the 122-item test information function was twice that of the 61-item test.
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For each simulee, responses were generated using the appropriate item parameters, and the
simulee's © to calculate the probability of obtaining the item correct according to the IPL model.
This probability was compared to a random number obtained from a uniform distribution [0.1]. If
the probability was greater than the random number then the simulee's response was 1 (i.e.,
correct), otherwise the simulee's response was incorrect and coded as O.

After the simulee had been administered a test of the appropriate length ar. EAP 6 and its
EAP SEE were obtained using the appropriate prior distribution and number of quadfature points.
This process was repeated 1000 times for each simulee (i.e., there were 1000 s for each of the
100 8 :» each of the 48 cells in the design).

Estimation. EAP ability estimates were calculated according to (1) and the EAP SEE was obtained
according to (2). For the three levels of the number of quadrature factor (10, Z*Vm and
80) the Xks and A(Xk)s were determined using the Mislevy "vertical line graph” method described
above for the range -4.0 < 6 < 4.0. For the \61-item test Z*VW 16 and for the 122-item
test 2*W= 23.

Analyses: In addition to obtaining the EAP SEE of 6, the standard deviation of the 1000 s G.e.,
the empirical SEE) for a given 6 was calculated. The basic design of the study was a four-way
repeated measures design with the difference between the empirical and EAP SEEs (i.e.,
SEEempirical - SEEEAP) as the dependent variable, latent ability distribution as the between
subjects factor, and test length, type of prior distribution, and number of quadrature points as
the within subjects factors.

In addition to calculating the empirical SEE, 68% and 95% confidence intervals (CIs) based on
the EAP SEE were calculated and the number of times the 68% and 95% ClIs contained 6 were
counted (CI68% and CI95%, respectively). Analysis of the Cls involved calcuiating the difference
between the number of times a given CI contained 6 and the number of times the CI was expected to
contain 0 (i.e., diff68% = CI68% - 680 and diff95% = CI95% - 950). The analyses of diff68% and
diff95% were treated separately. Diff68% and dif1¥5S% were used as the dependent variable in a
four-way repeated measures analysis with test length, type of prior distribution, and number of
quadrature points as the within subjects factors and latent ability distribution as the between
subjects factor.

The accuracy of ability estimation was assessed by root mean square error (RMSE) and Bias.

RMSE and Bias were calculated according to:

A
o - 8)2
RMSE(m:'\/Z—(k——

N ()
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where Sk is the ability estimate for simulee k with latent ability 6, and N is the number of
replications for simulee k (i.e., Ny = 1000). RMSE was used as the dependent variable in four-way
repeated measures analysis with within subjects factors of test length and number of quadrature
points, type of prior distribution. and latent ability distribution as the between subjects factor.
The analysis of Bias was treated similarly. Descriptive statistics were calculated on the 6s and §s
as well as on the EAP and empirical SEEs, the difference between SEEs, CI68% and CI95%.

Fidelity coefficients (rgf) were obtained.

To summarize, the effect of the four factors (latent ability distribution, prior distribution,
test length, and number of quadrature points) on the EAP and empirical SEEs was investigated
using a four-way repeat'd measures design for SEE. The two Cls were each analyzed using a four-
way repeated measures analysis with diff68% and diff95% as the dependent variables. Accuracy
of ability estimation was assessed using a four-way repeated measures analysis with RMSE and
Bias as the dependent variables. Because of its relaxed assumptions a multivariate approach was
used for all repeated measures analyses.

RESULTS

Tables 1 and 2 contain the descriptive statistics on the 8s and s as well as the rg#. As
can be seen from Table 1, increasing the number of quadrature points from 10 to Z*Vtestl—ength
and to 80, resulted in the mean and median 6 becoming more similar to the mean and median 8,
respectively, regardless of latent distribution, prior distribution, and test length level.

Table 2 shows that the rg§ also increased as the number of quadrature points increased from
10 to 80 nodes regardless of latent distribution, prior distribution, and test length level.
However, these increases in rgf) may not be considered meaningful by some because of the

magnitude of the rgf at the 10 quadrature point level.

Descriptive statistics on the empirical and EAP SEEs are presented in Table 3. This table
shows that increasing the number of quadrature points led to a decrease in the mean empirical
SEEs regardless of test length, prior distribution, and latent distribution. As would be expected,
doubling the test length led to a decrease in the average SEEs for all levels of the number of
quadrature points factor. Furthermore, for a given latent and prior distribution the mean
empirical SEE for the 10 quadrature point level/122-item test length was, typically,
approximately the same size as the average SEE for the 16 quadrature point level/61-item test
length and in certain conditions less than those for the 80 quadrature point level at the shorter
test length. In general, as the number of quadrature points increased the average empirical SEEs
decreased. In contrast, the EAP SEEs showed the opposite pattern with respect to increasing the

number of quadrature points. Specifically, increasing the number of quadrature points led to an
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increase in the mean EAP SEEs. A comparison of the EAP and empirical SEEs shows that,
regardless of test length, latent and prior distribution, the mean EAP SEEs for the Z*W
and 80 quadrature point levels had a tendency to be in good agreement with the mean empirical
SEEs. However, the average EAP SEEs tended to underestimate the mean empirical SEEs when 10
quadrature points was used for estimation, but as the number of quadrature points increased the
EAP SEEs and empirical SEEs came into closer agreement. As was the case with the empirical
SEEs, doubling the test length had the expected effect of decreasing the average EAP SEEs. The

discrepancy between the EAP and empirical SEEs was greatest for the positively skewed latent

ability distribution.

The descriptive statistics on Ci68% and CI95% are presented in Table 4. Given the SEE
results it is not surprising that the CI68% and CI95% were affected by the number of quadrature
points. It is only when 80 quadrature points were used for ability estimation that the CI68% and

CI95% approximated their expected values of 680 and 950, respectively, regardless of test length,

prior and latent distributions.

Table 5 contains the descriptive statistics on RMSE(8) and Bias(6). For the normal, positively
skewed, and uniform latent distributions increasing the number of quadrature points from 10 to
80 nodes led to more accurate 6 on average. However, for the bimodal condition there was a slight
increase in the mean RMSE(0) as the number of nodes increased from 2%V test length to 80. For a
given number of quadrature points and independent of the latent and prior distributions,
doubling the test length resulted in a decrease in the average RMSE(9).

The mean Bias(8) values tended to about 0.0 (range of -0.074 to 0.021) and inspection of the
corresponding histograms showed that these distributions tended to be somewhat unimodal and
symmetric about 0.0. There were five instances of bimodal distributions (3 associated with the
bimodal and 2 with the uniform latent ability distributions) and these occurred with the use of a
normal prior. Table 5 also shows that there was a slight underestimation Bias(8) for the bimodal
and positive skew 6 distributions and, in general, a slight overestimation for the normal and
uniform latent ability distributions. The standard deviations of Bias(8) were correspondingly
small and decreased with increasing number of quadrature points indicating that the average
Bias(8) value was a “typical” Bias(8) value and not atypically low because of the compensation that

takes place in its calculation (see (6)).
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The repeated measures an:lyses on the SEE difference are presented in Table 6. As can be
seen the magnitude of the difference between the EAP and empirical SEEs was affected by type
of the latent distribution, the test length, and the type of prior distribution as well as the
number of quadrature points used in estimation. Post hoc analyses on the SEE difference (Table
7) showed that for the bimodal and uniform latent distribution conditions increasing the
number of quadrature points from 2 *\ test length to 80 did not result in a significant
improvement in the agreement between the EAP and empirical SEEs. This was also true for the
normal and positively skewed 6 distributions, but only for the 122-item test. However, the use
of the 61-item test with these two 6 distributions showed that increasing the number of
quadrature points from 2 *\/tesTngthto 80 did result in a significant improvement in the
agreement between the EAP and empirical SEEs. It should be noted that the disagreement
between EAP and empirical SEEs for the normal and positively skewed 0 distributions using a

61-itemn test with 2 *V test length quadrature points is less than 0.044 (Table 3).

Table 7 also shows that for EAP estimation based on 80 quadrature points and a uniform prior
istribution doubling the test length did not result in a significant improvement in the agreement
between EAP and empirical SEEs. This pattern held for the normal prior except for the uniform
latent distribution condition where the test statistic was marginally significant. The use of
2 *V test length quadrature points, a uniform prior, and 122-item test produced significantly
greater agreement between the EAP and empirical SEEs for all latent ability distributions. There
was not as clear a pattern for the other conditions and while it was expected that when the prior
distribution matched the latent ability distribution there would be better agreement between the
EAP and empirical SEEs than when there was a mismatch, this pattern did not appear. It should
be noted that the magnitude of the SEE differences were comparatively small for the 2 *\/m
and 80 quadrature point conditinns (i.e.; discrepancies in the hundreds and thousandths) and
only at 10 quadrature points were these discrepancies occurring at the first decimal place. In
this regard as well as with respect to the power of the tests, some of the significant post hocs may
not be considered meaningful by some.

Figure 1 contains the test length by quadrature peints by prior distribution interaction plot
for each latent ability distribution. The plots clearly show (a) the convergence of empirical and
EAP SEEs as the number of quadrature points increased; (b) for all 8 distributions the SEEs for
the 122-item test were less than those for a test half as long for a given quadrature point, prior
distribution and type of SEE (i.e., empirical or EAP) level; and (c) for a given quadrature point

level and for a SEE type, thc use of a uniform prior resulted in larger values than the use of a
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normal prior at the 6l-item test length (this difference appeared to disappear at the 122-item

test length).

Table 8 contains the repeated measures analyses for the confidence intervals. For diff68% all
first-order interactions and the latent ability distribution by test length by number of
quadrature points interaction were significant, whereas for diff35% the four-way interaction of
latent ability distribution, test length, number of quadrature points, and type of prior

distribution was significant.

Post hoc analysis of the effect of type of prior distribution used in estimation on diff68%
(Table 9) showed that for a given test length the use of a uniform prior distribution, rather than a
normal prior, led to significantly better agreement between the average number of 68% Cls
containing 6 and their expected value of 680. However, for a given prior distribution doubling the
test length led to a significant increase in the mean number of 68% Cls not containing 6.
Inspection of Table 4 showed that these significant results were associated with poorer
performance (i.e., lack of agreement between the number of 68% CIs containing 8 approaching
their expected value of 680) at the 10 quadrature point level for the 122-item test than at the 61-
item test length, regardless of the prior and latent ability distribution. When the number of
quadrature points is increased from 10 to 2 *Wor greater, then doubling the test
length produces better agreement between the number of 68% CIs containing 8 approaching their
expected value of 680 at all levels of prior and latent ability distribution. Moreover, although for
a given prior distribution increasing the number of quadrature points led to significant
improvement, only when 10 quadrature points were used for estimation was the choice of prior
distribution relevant. For instance, the use of 10 quadrature points resulted in significantly
better agreement between the average number of 68% CIs containing 6 and their expected value of
680 when a uniform prior distribution was used instead of a normal distribution. However, when
80 quadrature points were used for EAP estimation the mean diff68% when a normal prior was
used was -0.808 and for a uniform prior it was 0.518 and the choice of prior was irrelevant.
While at the 2 *Vtest length level there was no significant difference for type of prior
distribution, there were, on average, 59.71 fewer CI68% not containing 6 than would be expected
when a normal prior was used and when a uniform prior was used the mean diff68% was -55.80.
Therefore, only at the 80 quadrature point level was the number of CI68% containing 6

approaching the expected vaiue of 680.
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Analysis of the CI95% (Table 10) showed that increasing the number of quadrature points
from 10 to 2 *‘J—r;rmgthresulted in significantly more 95% CIs approaching their expected
value of 950 regardless of test length, type of prior distribution, and 6 distribution. In addition,
increasing the number of quadrature points ffom 2 *Wo 80 led to a significant
reduction in the mean diff95% for the 61-item test with the use of a normal prior for all latent
ability distributions. This was also true when a uniform prior was used with a 61-item test and
when the 6 distributions were normal or positively skewed. While there was not a significant
difference between the increase from 2 *Wto 80 quadrature points for certain
conditions (e.g., uniform 6 distribution, 122-item test length), a comparison with Table 4 showed
that the magnitude of the mean difference for these nonsignificant cells was, at most, 1.9 (the
uniform 6 distribution, uniform prior, 122-item test length cell). That is, for these
nonsignificant cells and when 80 quadrature points were used for estimation there were, on
average, 1.9 95% Cls that did not contain 6 and overall there were at most 3.6 95% Cls that did not
cover the barameter. Therefore, while the difference between 2 *Wand 80 quadrature
points may not be significant, in practice the number of CIs which contain 6 when 80 as oppose to
Z*Vmuadrature points were used for estimation may be considered meaningful by
some. For CI68% and using 80 quadrature points for estimation there were at most, on average,
7.2 68% Cls that did not include 6 (Table 4).

Table 11 contains the repeated measures analyses for RMSE(6) and Bias(6). These
results showed that the second-order interactions for RMSE(®) were significant, while Bias(6)
was affected by the interaction of @ distribution, test length, number of quadrature points,
and type of prior distribution used. Post hoc analyses for RMSE(®) (Table 12) revealed that
there was not a significant interaction between type of prior distribution and the number of
quadrature points within latent ability distribution. In general, increasing the number of
quadrature points from 10 to 2 *‘.[mgth—and from 10 to 80 led to a significant reduction
in the mean RMSE(8), but increasing from 2 *‘/—tesT—ngthto 80 quadrature points did not
result in significantly more accurate 65. regardless of 6 distribution (cf., Table 5). The use of
a uniform prior instead of a normal prior led to a significant increase in the average RMSE(6),
however, the magnitude of these increases may not be considered meaningful by some
individuals (e.g., for the bimodal, normal, positive skew, and uniform @ distributions the mean
RMSE(8) were 0.2265 (normal) vs 0.2334 (uniform), 0.2554 (normal) vs 0.2622 (uniform),
0.2731 (normal) vs 0.2806 (uniform), and 0.2485 (normal) vs 0.2544 (uniform), respectively).
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The analysis of the quadrature points by test length within 6 distribution interaction
showed a significant quadrature points by test length interaction. For all levels of the
quadrature points factor increasing the test length from 61 to 122 items produced
significantly more accurate Ss, regardless of latent ability distribution. For all latent ability
distributions, except for the positive skew @ distribution, increasing the number of
quadrature points from 10 to 2 *\ test length and from 10 to 80 led to a significant reduction
in the mean RMSE(®), but increasing from 2 *V test length to 80 quadrature points did not

A
result in significantly more accurate 6s, regardiess of 6 distribution and test length.

Within latent ability distribution there was not a significant test length by type of prior
distribution interaction. As was the case with the quadrature points by test length within ©
distribution interaction, doubling the test length led to a significant reduction in the average
RMSE(®) for all & distributions. Furthermore and similar to the prior distribution by the number
of quadrature points within latent ability distribution interaction, the use of a uniform prior
instead of a normal prior led to a significant increase in the average RMSE(®), regardless of latent
ability distribution.

There was a significant number of quadrature points by test length interaction for both
normal and uniform prior distributions. Increasing the test length from 61 to 122 items
produced a significant reduction in RMSE(®) for all levels of the number of quadrature points
factor, regardless of type of prior distribution used in ability estimation. For both types of prior
distributions, increasing the number of quadrature points from 10 to 2 «\ test length and from 10
to 80 led to a significant reduction in the mean RMSE(8), but increasing from 2 *Y test length to
80 quadrature points did not result in significantly more accurate 35.

Post hoc analyses of Bias(8) are presented in Table 13. As can be seen all significant
differences amongst the levels of the number of quadrature, points factor occurred when a 61-item
test was used and were reflective of a reduction in the average Bias(8) at the larger number of
quadrature points level from the mean Bias() at the lower number of quadrature points level (cf.,
Table 5). Similarly, the significant differences between the 61- and 122-item tests were

produced by Bias(8) for the 122-item test being less than that for the 61l-item test.

CONCLUSIONS AND DISCUSSION
While it may be argued by some that varying a and ¢ is more realistic with respect to actual
testing situations, this study used a 1PL model because it was considered to avoid a number of

confounding issues and needlessly complicate the study. A thought-experiment may be sufficient

pecd
oy |
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to consider what may occur using models with varying item discrimination (as) and/or the
pseudo-guessing parameter (cs). If a is allowed to increase from the study's value of 1.0, then
given the inverse relationship between information (I(8)) and SEE the EAP SEEs would become
smaller than those obtained in this study. However, because of the greater information available
for ability estimation, the 65 would become more stable and the empirical SEE would also
decrease. In short, the discrepancy between the EAP and empirical SEEs at 10 quadrature points
would still exist. .The use of items with low as is not considered meaningful because in practice
items with low as are not considered desirable (i.e., most psychometrician prefer to use items
which discriminate well and to increase I(8) rather than to decrease it). Using slightlv less
informative items than used in the study, say 0.8 < a < 1.0, would increase the EAP SEE. However,
these same items would make the 65 comparatively less accurate and thereby increase the
empirical SEEs. The discrepancy between the EAP and empirical SEEs would still remain.
Allowing ¢ to increase from the study's value of 0.0 would have a similar impact. When ¢ > 0.0
the location of maximum I(8) simply shifts to be higher than the item's difficulty value (b) and
lowers the amount of information available for estimation. Therefore, with increasing c¢ the
variance and standard error of estimation increase. There are two possible scenarios with
scenario | requiring an assumption. Scenario 1 requires one to assume that by increasing ¢ and
thereby decreasing the information available for ability estimatiou it is possible to still obtain
reasonably stable and accurate 65 (and not increase the empirical SEE). If this is true, then
conceivably there is a value of ¢ > 0.0 that will sufficiently increase the EAY SEE so that it agrees
with the empirical SEE. That is, the goal is to construct a test using items that examinees have a

large probability of correctly answering without knowing the correct answers (i.e., guessing) and
still obtain accurate%s for those examinees. Scenario 2 is that increasing ¢ and thereby
decreasing the information available for ability estimation results in unstable and inaccurate 65.
This instability and inaccuracy is reflected in a larger empirical SEE than would be obtained if ¢
= 0.0. Therefore, there is no ¢ which will sufficiently increase the EAP SEE so that it agrees with
the empirical SEE because as ¢ increases so does the empirical SEE. It is this latter issue which
also addresses the use of "reasonable” c¢s of say, less than 0.25.

To summarize the results of our thought experiment, any nonzero ¢ or a value of a < 1.0 will
increase the empirical and EAP SEEs. Increasing a will decrease the EAP and empirical SEEs. In
all cases the discrepancy between the EAP and empirical SEEs that was observed at 10 quadrature
points will continue to exist.

As mentioned above, Bock and Mislevy (1982) state that the PSD(@) is virtually
interchangeable with the standard error after about 20 items. Part of the support for this
statement comes from their adaptive test simulation results which were based on the use of 21

quadrature points for estimation. This study showed that considering the PSD(6) to be

16
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interchangeable with the standard error is questionable even with 122 items if the number of
quadrature points is 10; given the trend in the data (see Figure 1) this is probably also true for
less than 10 quadrature points. As the number of quadrature points increase it appears that

considering PSD(@) to be interchangeable with the standard error is reasonable. For example,

given that RMSE = V SEE2 + Bias(68)2, the agreement between the observed mean RMSE(8) with the
mean RMSEs based on the EAP and empirical SEEs was assessed (Table 14). As can be seen, when

the number of quadrature points is 80 there is very good agreement between the observed mean

RMSE(08) and the RMSEs calculated on the basis of either the EAP SEE or the empirical SEE.

This studied showed thar when the purpose of assessment is to rank-order examinees in terms

of ability, the use of 10 quadrature points provides very good agreement (i.e., rg$) between the
EAP Ss and their corresponding 6s for symmetric distributions. If there is reason to suspect that
the latent ability distribution is skewed, then the use of 2 ‘mquadrature points may
be called for. More accurate gs (i.e., in terms of RMSE(6) and Bias(6)) may be obtained by
increasing the test length as well as the number of quadrature points. Furthermore, Table 5
showed that for a fixed test length the accuracy (mean RMSE(9)) ma‘y be increased simply by
increasing the number of quadrature points from 10 to 80. For example, the use of 80 quadrature
points with a 61-item test produced RMSE(0)s that were less than those of a test twice as long, but
using 10 quadrature points for estimation.

Given the SEE difference, the diff68% and diff95%, and the RMSE = \/SEEZ + Bias(8)2

relationship analyses, it appears that the use of 10 quadrature points tends to result i EAP
SEE(g)s which underestimate the observed standard error. These SEEs give the false
impression that the 6 is being estimated more accurately than, in fact, it is. Creation of
confidence intervals will be erroneously narrower than what they should be and classification
decisions based on such ClIs will potentially be incorrect. For instance, examinees may be
classified as masters (e.g., certified) because their (erroneously narrow) Cls fall above the
standard. In these applications it is necessary to increase the number of quadrature points
used in EAP estimation. A conservative approach would be to use 80 quadrature points
because, overall, this level provided the best agreement between the Cls and their expected
values. Clearly, there are situations where the use of 2 “\ test length quadrature points may
be reasonable given the test's length, the type of prior distribution used, and knowledge of 6's
distribution.

When a CAT using EAP ability estimation is terminated using the standard error criterion, it
appears necessary to use about 80 quadrature points if the adaptive test will be validly

terminated, regardless of latent @ distribution. This is also true if the EAP SEE will be used to

17
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estimate the reliability coefficient; Bock & Misleyy (1982) state that | - PSD(@)2 is the
reliability coefficient for the EAP 8. If it is reasonable to assume a bimodal or uniform 6
distribution, then the use 2 **jtest length quadrature points with a normal prior distribution
appears to be sufficient for accurate EAP SEEs. However, because of the interaction between test

length, number of quadrature points, and EAP SEE, shorter length tests may require greater than
2 *Vtest length number of quadrature points to obtain accurate EAP SEEs. Given the observed

rgfs with 10 quadrature points it may be permissible to use 10 quadrature points in nonadaptive

testing situations if the EAP SEE will not be used.

w
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Table 1: Descriptive statistics on 6s and s.

18

Test Length

61 122
Latent 6 Quadrature Points Quadrature Points
Distribution Prior 10 16 80 10 23 80 0
Bimodal Normal Mean -0.026 -0.011 -0.001 -0.019 -0.001° -0.001 0.000
Median -0.619 -0.405 -0.296 -0.729 -0.329 -0.314 -0.308
SD 0.998 0.964 0.951 1.018 0.981 0.978 1.056
Skew 0.265 0.234 0.220 0.296 0.221 0.220 0.220
Uniform Mean -0.026 -0.010 -0.001 -0.021 -0.001 -0.001
Median -0.620 -0.414 -0.313 -0.729 -0.338 -0.323
SD 1.052 1.021 1.010 1.048 1.011 1.008
Skew 0.259 0.234 0.221 0.285 0.221 0.220
Normal Normal Mean -0.068 -0.072 -0.074 -0.067 -0.076 -0.076 -0.079
Median -0.041 -0.026 -0.017 -0.042 -0.092 -0.014 -0.010
SD 1.002 0.943 0.924 1.037 0.954 0.949 0.977
Skew 0.025 0.010 0.006 0.002 0.014 0.002 0.005
Uniform Mean -0.074 -0.077 -0.079 -0.070 -0.079 -0.079
Median -0.041 -0.026 -0.018 -0.042 -0.089 -0.015
SD 1.054 1.004 0.987 1.064 0.986 0.980
Skew 0.021 0.014 0.012 -0.001 0.015 0.005
Positive Skew Normal Mean -0.055 -0.010 0.010 -0.060 0.002 0.011 0.014
Median -0.361 -0.229 -0.156 -0.488 -0.212 -0.158 -0.156
SD 0.826 0.745 0.716 0.860 0.740 0.734 0.754
Skew 0.854 1.056 1.141 1.157 1.156 1.143 1.157
Uniform Mean -0.046 -0.006 0.012 -0.053 0.004 0.012
Median -0.361 -0.233 -0.164 -0.488 -0.215 -0.163
SD 0.860 0.790 0.763 0.876 0.764 0.758
Skew - 0.916 1.094 1.169 0.874 1.168 1.157
Uniform Normal Mean -0.178 -0.182 -0.185 -0.185 -0.192 -0.193 -0.199
Median -0.733 -0.520 -0.429 -0.792 -0.432 -0.430 -0.438
SD 1.606 1.595 1.591 1.652 1.642 1.641 1.695
Skew 0.174 0.181 0.184 0.173 0.181 0.182 0.180
i Uniform Mean -0.193 -0.197 -0.199 -0.193 -0.200 -0.200
Median -0.734 -0.537 -0.454 -0.792 -0.444 -0.443
SD 1.733 1.723 1.717 1.721 1.708 1.706
Skew 0.169 0.175 0.178 0.170 0.178 0.178
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Table 2: Fidelity coefficients.
Test Length
61 122

Latent 6 Quadrature Points Quadrature Points
Distribution Prior 10 2*Vlength? 80 10 2*Nlength? 80
Bimodal Normal 0.9910 0.9990 1.0000 0.9865 0.9998 1.0C00

Uniform 0.9935 0.9993 1.0000 0.9886 0.9998 1.0000
Normal Normal 0.9835 0.9978 0.9999 0.9765 0.9994 1.0000

Uniform 0.9877 0.9984 0.9999 0.9793 ° 0.9995 1.0000
Positive Skew Normal 0.9749 0.9961 0.9999 0.9587 0.9987 0.9999

Uniform 0.9798 0.9971 0.9999 0.9620 0.9989 0.9999
Uniform Normal 0.9975 0.9997 1.0000 0.9960 0.9999 1.0000

Uniform 0.9983 0.9998 1.0000 0.9966 0.9999 1.0000

dlength= test length

21




Table 3: Mean EAP, Empirical, and Difference SEEs?

Test Length

61 122

Latent © Quadrature Points Quadrature Points
Distribution Prior SEEa 10 2%Vlength® 80 10 2*Vlength® 80
Bimodal Normal Emp 0.248 0.227 0.232 0.202 0.166 0.169
EAP 0.160  0.225 0.239 0.093 0.167 0.171

Diff 0.087 0.003 -0.007 0.108 -0.001 -0.003

Uniform Emp 0.263 0.243 0.247 0.209 0.172 0.174

EAP 0.175 0.234 0.:246 0.098 0.170 0.174

Diff 0.G38 0.008 0.001 0.111 0.002 0.000

Normal Normal Emp 0302  0.249 0.234 0.236 0.178 0.170
EAP 0.155 0.224 0.240 0.081 0.166 0.172

Diff 0.147 0.025 -0.007 0.155 0.012 -0.002

Uniform Emp 0.314 0.263 0.250 0.240 0.184 0.176

EAP 0.167 0.234 0.248 0.084 0.169 0.175

Diff 0.147 0.029 0.002 0.157 0.015 0.001

Positive Skew Normal Emp 0.343 0.263 0.234 0.268 0.176 0.170
EAP 0.152  0.222 0.239 0.076 0.162 0.171

Diff 0.191 0.041 -0.006 0.192 0.013 -0.002

Uniform Emp 0.353 0.275 0.249 0.273 0.181 0.175

EAP 0.162  0.231 0.247 0.079 0.166 0.174

Diff 0.191 0.044 0.002 0.194 0.015 0.001

Uniform Normal Emp 0.275 0.245 0.240 0.234 0.180 0.177
EAP 0.203 0.244 0.250 0.120 0.178 0.181

Diff 0.072  0.001 -0.010 0.114 0.002 -0.004

Uniform Emp 0.303 0.272 0.266 0.248 0.190 0.187

EAP 0.224 0.259 0.263 0.130 0.183 0.186

Diff 0.079 0.013 0.002 0.118 0.007 0.002

ERIC 2

e

8Emp = SEEempirical. EAP = SEEEAP. Diff = (SEEempirical - SEEEAP); b1ength= test length
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Table 4: Descriptive statistics on 68% and 95% confidence intervals?
Test Length
61 122
Latent 6 Quadrature Points Quadrature Points
Distribution Prior 10 2*Vlength® 80 10 2*Viength® 80
68% confidence interval
Bimodal Normal Mean 335.5 663.8 679.4 177.1 675.9 686.9
SD 214.2 156.0 44.0 132.2 85.8 349
Uniform Mean 372.6 658.0 684.5 186.0 675.7 686.1
SD 230.5 143.5 44.2 135.6 75.8 354
Normal Normal Mean 289.5 582.6 685.1 120.1  609.5 684.8
SD 224.6 209.0 49.0 118.1 166.0 41.1
Uniform Mean 305.2 586.1 684.0 136.4 615.7 677.4
SD 237.0 205.8 443 130.5 166.3 42.8
Positive Skew Normal Mean 238.0 540.1 677.6 103.9 608.1 685.9
SD 203.7 228.6 51.7 134.6 185.0 434
Uniform Mean 269.9 543.5 672.8 113.8 610.3 680.7
SD 236.0 221.1 52.6 147.9 186.8 399
Uniform Normal Mean 434.1 630.0 664.3 242.8 652.3 669.8
SD 236.8 138.0 57.1 148.1 111.0 40.0
Uniform Mean 463.1 649.6 675.8 263.7 654.8 682.8
SD 234.4 135.3 51.0 153.2 114.4 38.7
95% confidence interval
Bimodal Normal Mean 496.9 904.6 948.8 280.6 934.7 950.2
SD 248.5 113.1 16.5 127.3 71.6 11.5
Uniform Mean 549.6 918.0 950.8 291.0 935.0 950.1
SD 254.3 105.3 13.0 184.5 71.2 11.0
Normal Normal Mean 413.2 8447 949.6 208.8 868.7 948.7
SD 271.5 173.5 16.0 181.6 159.3 15.7
Uniform" Mean 458.0 858.0 948.5 225.1 872.6 948.9
SD 292.1 166.0 15.7 189.6 153.8 14.7
Positive Skew Normal Mean 345.4 788.7 952.3 176.9 881.8 947.8
SD 243.3 207.6 16.0 178.0 145.4 16.3
Uniform Mean 380.0 808.7 948.3 188.3 884.5 946.4
SD 271.1  201.2 15.3 183.0 144.8 15.5
Uniform Normal Mean 634.3 893.7 935.0 383.3 919.8 942.5
SD 261.6 122.6 27.5 210.0 87.2 15.3
Uniform Mean 676.4 913.2 949.3 411.0 925.6 94¥%.1
SD 268.3 124.3 14.4 209.6 88.4 9

asD=standard deviation; Plength= test length
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Table 5: Descriptive statistics on RMSE(8) and Bias(8)3

Test Length

61 122
Latent © Quadrature Points Quadrature Points
Distribution Prior 10 2*Vlengthb 80 10 2*Vlength® 80
RMSE(8)
Bimodal Normal Mean 0.282 0.235 0.238 0.265 0.169 0.171
SD 0.122 0.044 0.009 0.137 0.020 0.006
Uniform Mean 0.293 0.246 0.247 0.267 0.173 0.174
SD 0.114 0.040 0.008 0.135 0.019 0.005
Normal Normal Mean 0.352 0.258 0.239 0.328 0.183 0.172
SD 0.186 0.070 0.016 0.207 0.042 0.011
Uniform Mean 0.361 0.270 0.250 0.330 0.187 0.176
SD 0.177 0.065 0.013 0.204 0.041 0.010
. Positive Skew Normal Mean 0.400 0.272 0.237 0.379 0.180 0.171
SD 0.206 0.079 0.013 0.228 0.042 0.010
Uniform Mean 0.410 0.284 0.249 0.382 0.185 0.175
SD 0.195 0.074 0.011 0.225 0.040 0.009
Uniform Normal Mean 0.311 0.267 0.261 0.280 0.188 0.185
SD 0.121 0.051 0.032 0.142 0.029 0.020
Uniform Mean 0.321  0.275 0.267 0.284 0.192 0.188
SD 0.115 0.049 0.028 0.137 0.030 0.021
Bias(0)
Bimodal Normal Mean -0.026 -0.011 -0.001 -0.019 -0.001 -0.001
‘ SD 0.135 0.060 0.055 0.167 0.031 0.028
Uniform Mean -0.026 -0.010 -0.001 -0.021 -0.001 -0.001
SD 0.127 0.042 0.009 0.161 0.019 0.007
Normal Normal Mean 0.011 0.007 0.005 0.012 0.003 0.003
SD 0.181 0.072 0.054 0.226 0.041 0.029
Uniform Mean 0.005 0.002 0.000 0.009 0.000 0.000
SD 0.177 0.062 0.014 0.225 0.033 0.009
Positive Skew Normal Mean -0.070 -0.024 -0.005 -0.074 -0.012 -0.003
SD 0.191 0.067 0.040 0.254 0.040 0.023
Uniform Mean -0.060 -0.020 -0.002 -0.067 -0.011 -0.002
SD 0.193 0.069 0.014 0.255 0.037 0.009
Uniform Normal Mean 0.021 0.016 0.014 0.014 0.007 0.006
SD 0.147 0.108 0.105 0.156 0.057 0.055
Uniform Mean 0.006 0.002 0.000 0.006 -0.001 -0.001
SD 0.108 0.046 0.027 0.142 0.026 0.015

aSD=standard leviation; blength: test length
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Table 6: Repeated Measures Analysis of SEE difference (SEEempirical - SEEasymptotic)

Source vl v2 F

Latent? 3 396 13.26%*
Lengthb 1 396 5.51%
QuadPts® 2 395  716.30%*
Priord 1 396 363.67%*
Latent X Length 396 18.51%*
Latent X QuadPts 790 8.38**

Latent X Prior 396 25.40**
Length X QuadPts 395 48.39**
Length X Prior | 1 396  188.15**
QuadPts X Prior 395 164.55**
Latent X Length X QuadPts 790 11.47**
Latent X Length X Prior 396 30.05**
Latent X QuadPts X Prior 790 14.67**
Length X QuadPts X Prior 395 236.59**
Latent X Length X QuadPts X Prior 790 16.25**

N W ON W
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L atent Distribution; DTest Length; ®Number of Quadrature Points;

dPrior Distribution; * p < 0.05, ** p < 0.01




Table 7: Post Hoc Analyses (t-tests) for SEE difference (SEEempirical - SEEEAP).

Latent 6 Prior Distribution
Distribution Hypotheses Normal Uniform
Test Length Test Length
61 122 61 122
Bimodal K10 vs UZ*Vlength 12.58** 16.16** 11.82** 16.25**
K10 VS U0 13.94** 16.49** 12.93**  16.53**
u2xNlength Vs 180 1.36 0.32 1.11 0.28
Normal K10 vs HZ*\]length 11.35** 13.20%* 10.96**  13.23**
H10 VS L8O 14.27** 14.58** 13.56%*  14.54**
u2xNlength Vs K80 2.92** 1.37 2.59%* 1.30
Positive K10 vs HZ*\/length 12.28** 14.70** 12.17**  14.85**
Skew K10 VS U8O 16.15%* 15.92** 15.68** 16.01**
#2*xN length Vs K80 3.86** - 1.22 3.51** 1.16
Uniform Kio vs UZ"‘\Jlength 9.53** 14.98** 8.99**  15.08**
K10 VS U0 11.05** 15.72** 10.45**  15.80**
u2*Viength vs H80 1.52 0.74 1.46 0.72

Latent Distribution

Prior Quadrature Positive
Distribution Points? Hypotheses Bimodal Normal Skew Uniform
Normal 10 H61 Vs U122 -6.0]1 ** -1.83 -0.28 -12.39**
2*Vlength 0.91 3.03%* 6.40%* -0.26
80 -1.10 -1.02 -0.91 -1.98*
Uniform 10 W6l VS H122 -6.89** -2.43** -0.78 -12.37**
2*Vlength 1.98%* 3.75%* 6.84%* 2.07*
80 0.31 0.24 0.16 0.31

3ength— test length; * p < 0.05, ** p < 0.01




Table 8: Repeated Measures Analysis of diff68% and diff95%.

Source vl v2 Faiff68% Fdiff95%
Latent? 3 396 2]1.41%* 28.70**
Lengthb 1 396 149.38** 288.73*
QuadPts® 2 395 1134.64%* 1339.62%*
Priord 1 39'6 34.76** 209.88**
Latent X Length 3 396 4.28** 7.57**
Latent X QuadPts 6 790 12.38%* 15.84**
Latent X Prior 3 396 2.71* 3.65*
Length X QuadPts 2 395 263.00** 443 28**
Length X Prior 1 396 6.17* T71.18**
QuadPts X Prior 2 395 26.14%* 82.90**
Latent X Length X QuadPts 6 790 2.17* 5.10%*
Latent X Length X Prior 3 396 0.51 1.04

Latent X QuadPts X Prior 6 790 1.72 2.14%
Length X QuadPts X Prior 2 395 1.95 27.91%*
Latent X Length X QuadPts X Prior 6 790 2.08 2.15*

] atent Distribution; PTest Length; Number of Quadrature Points;

*p <005 **p<00]

dprior Distribution;
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Table 9: Post Hoc Analyses (t-tests) for diff68% (Cl168% - 680).

Latent Ability Distribution X Prior Distribution Test Length X Prior Distribution

Prior Distribution Prior Distribution
Hypotheses? Normal Uniform Hypothesesd Normal Uniform
Ubi VS Mnml 3.65%*  3.81** K61 VS 122 10.67** 12.34%*
Hbi VS Hps -5.39%*  .5.49**
Bbi VS Mupif -1.10 -1.87 Test Length
Wnml VS Hps -1.74  -1.68 61 122
Kaml VS Bunif -4.75%* -5.69%*
Hps VS Hunif -6.49*%* 7. 37** Knml VS Munif -6.06** -2.77**

Quadrature Points X Prior Distribution

Prior Distribution Quadrature Points
Hypotheses? Normal Uniform Hypothesis? 10 2*Vtest length? 80
K10 Vs uz*‘\] length -42.24** -40.31** Mnml VS Bunif  -9.86** -1.82 -0.62
K10 VS H8O -48.83** -46.61**

uz*‘hength VS W80 -6.59**  -6.30**

Quadrature Points X Test Length within Latent Ability Distribution

Latent © Test Length Quadrature Points
Distribution Hypothesesb 61 122 Hypotheses 10 2 *Vtest lengthb 80
Bimodal K10 VS HZ*‘jlength -28.16**  -45.34** g1 vs n122 34.00** -2.92** 0.89
K10 VS H8O -30.09*%* -46.32%**
K2 * q length vs u80 -1 93 '0.98
Normal K10 VS U2 * v length -20.92*%*  -35.31** g vs ui22 37.83** -6.32** 0.77
K10 VS L8O -28.22**  -40.30**
u2* N length Vs H80 <7.30%*  -4.99**
Positive K10 VS H2* Y, length -21.10**  -36.69** uLg] vs m]122 23.32%*  .10.83** -1.31
Skew K10 VS U80 -30.88**  -42.12%*
H2*N length VS K80 -9.78** -5.43%*
Uniform K10 Vs HZ*Vlength -16.84*%*  -3524** ;6] vs L1122 39.50** S2.77%* -1.26
K10 VS H8O -19.50%*  -37.24**
—_—

H2*xVlength VS H80 -2.66** -2.00*

dbi=bimodal. nml=normal, ps=positive skcw, unif=uniform; blength: test length;
*p<0.05 ** p<0.01
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Table 10: Post Hoc Analyses (i-tests) for diff95% (CI95% - 950).

Latent © Prior Distribution
Distribution Hypotheses? Normal Uniform
Test Length Test Length
61 122 61 122
Bimodal 110 vs uz*\] length 21,11 %= -33.87** -19.43%% .33 95%*
H10 Vs 180 -23.40%** -34.67** -21.16*%* -34.75%*
#2*Vlength Vs K80 -2.29* -0.80 -1.73 -0.80
Normal H10 vs uz*\/ length 19.14%* -29.27%* -17.78*%* -28.79%*
KH10 Vs L80 -23.78** -32.81%** -21.80*%* -32.18%*
#2*Vlength vs H80 4.65%* ~3.54** -4.02%* -3.39%=*
Positive K10 vs HZ*‘jlength 20.17%*  -32.07** -19.08** -30.99**
Skew K10 VS H80 -27.61** -35.07** -25.30%* -33.74%*
H2*Vlength Vs 80 . 7.44%* -3.00** -6.22%* -2.76**
Uniform K10 VS PZ*Vlength .12.60**  -26.05** -11.73*%* .25.50%*
K10 VS H8O -14.60%*  -27.15** -13.52%* -26.62**
#2*N length Vs H80 .2.00* -1.10 -1.79 -1.12

Latent Distribution

Prior Quadrature Positive

Distribution Points? Hypotheses Bimodal Normal Skew Uniform

Normal 10 H61 vs 1122 20.92** 17.26 11.92%* 21.21**
2*‘jlength -2.91%* -2.03* -6.58%* -2.20*
80 -0.13 0.08 0.32 -0.64

Uniform 10 HE] VS H122 24.54%* 18.15%* 13.10** 23.65%*
Z*Vlenglh -1.61 -1.14 -5.18%* -1.11
80 0.07 -0.03 0.13 0.10

3length= test length; * p < 0.05, ** p < 0.01
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Table 11: Repeated Measures Analysis of RMSE(9) and Bias(8),

Source vl v2 FRMSE FBias
Latent? 3 396 7.70%x* 5.39%*
Length? 1 396  4281.22** " 0.12°
QuadP1s® 2 395 176.33** 3.18*
Priord 1 396 526.39**  0.78
Latent X Length 3 396 6.91** 3.44%
Latent X QuadPts 6 790 6.44%* 2.35*
Latent X Prior 3 396 1.28 1.12
Length X QuadPts 2 395 302.98** 3.37*
Length X Prior 1 396 687.96** 0.55
QuadPts X Prior 2 395 17.35%* 2.71
Latent X Length X QuadPts 6 790 4.14%=* 2.00
Latent X Length X Prior 3 396 8.53** 1.15
Latent X QuadPts X Prior 6 790 2.21* 3.77*x*
Length X QuadPts X Prior 2 395 12.91** 2.65
Latent X Length X QuadPts X Prior 6 790 1.69 2.37*

aLatent Distribution; PTest Length; CNumber of Quadrature Points; 9Prior

*p <005 **p<001

Distribution;
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Table 12: Post Hoc Analyses (t-tests) for RMSE(®).

Quadrature Points X Prior Distribution within Latent Ability Distribution

Latent 6 Distribution?

Hypotheses?:b bi nml ps unif
Unml VS Hunif -17.13**%  .17.06%*  -24.50%*  -11.16%*
H10 Vs uz*\/,engm 6.36%*  10.60**  14.51** 6.12%*
K10 vs mgQ 6.19%*  11.95%*  16.51%** 6.63**
uz*\flengm Vs 180 -0.17 1.35 2.00* 0.51

Quadrature Points X Test Length

within Latent Ability Distribution

Latent 0 Test Length Quadrature Points
Distribution Hypotheses? 61 122 Hypotheses 10 2 *Vtest length? 80
Bimodal 110 Vs HZ*‘J length 6.99** 14.11** g1 vsuy22  18.09** 58.52%* 59.37**
K10 VS U8O 6.64** 13.91%*
uz*Vlengm vs ugp -0.35  -0.20
Normal H10 vs u2*\N length 9.15%* 14.36%* ll6i VS 122 24.75%* 72.45%* 64.17**
' H10 VS H8O 11.11%%  15.4]1%*
uz*‘j;gIVS ugo 1.95 1.05
Positive H10 vs p.z*\,/ length 11.31** 17.70%* nug) vs 122  17.72** 69.26** 50.29**
Skew K10 VS M8O 14.49%* 18.53**
HZ*Vlength vs UgQ  3.18** 0.83
Uniform H1Q Vs p.z*\/ length 6.53%* 13.37** @) vs 122  23.10** 54.80** 52.40**
K10 VS U8O 7.62*%* 13.94%**
HZ*\hength vs ugo  1.09 0.57

Prior Distribution X Test Length within Latent Ability Distribution

Latent © Distribution®

Hypothesesb bi nml ps unif
Unml VS Hunif -12.08** -12.03** -17.28%*  -7.86**
L6l VS 1122 31.97** 37.94** 32.27**  30.64**
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Table 12: Post Hoc Analyses (t-tests) for RMSE(8) (continued).

Quadrature Points X Test Length within Prior Distribution

Prior Quadrature Points Test Length
Distribution Hypotheses 10 2*Vtest length? 80 Hypotheses? 61 122
Normal U6l Vs 122 23.97** 79.45%* 70.41%* 0 vs p.z:a\] length 8.28** 14.03**
110 VS U0 9.79%* 14.61**
uz*‘Vlength vs ugo 1.52 0.58
Uniform ug1 vs w122  30.79** 86.80** 76.50** 10 vs uZ*\Jlength 8.13*%* 13,94**
110 VS 80 9.80** 14.54%*

u2*Vlength vs g0 1.67 0.61

Alength= test length; bbi=bimodal, nml=normal, ps=positive skew, unif=uniform; * p < 0.05, ** p < 0.01
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Table 13: Post Hoc Analyses (it-tests) for Bias(8),

Latent 8 Prior Distribution

Distribution Hypotheses? Normal Uniform
Test Length Test Length
61 122 61 122
Bimodal Hio vs pz*'\J length .1.01 0.07 -0.68 0.01
L1O VS U8O -2.08 0.07 -2.44%* 0.06
H2*N length Vs 180 -1.06 0.01 -1.76 0.05
Normal Li0 vs HZ*Vlength -0.10 -0.24 -0.41 0.00
L10 VS L8O 0.42 -0.01 0.35 -0.00
H2*Viength Vs 180 0.52 0.24 0.76 -0.01
Positive L10 vs HZ*Vlength 0.42 -0.71 0.73 -0.83
Skew H1O VS U8O -4.31%* -0.85 -3.99** -0.86
uz*\/length vs 80 -4.73** -0.14 -4.72**  -0.02
Uniform L10 vs LA length - 1.00 -1.00 0.04 -0.14
L10 VS L8O 0.67 0.10 0.70 0.11
uz*‘flengm Vs 480 -0.33 1.10 0.65 0.25

Latent Distribution

Prior Quadrature Positive
Distribution Points? Hypotheses Bimodal Normal Skew Uniform
Normal 10 H61 VS U122 -2.05* 0.49 -3.10** 1.26
2*Vlength -1.40 0.40 -3.74%* -0.03
80 -0.76 0.24 -1.12 0.90
Uniform 10 H61 Vs K122 -2.19* 0.30 -2.78%* 0.69
2*Nlength -1.79 0.53 -3.66%* 0.57
80 -0.74 0.10 -1.02 0.33

dlength= test length; * p < 0.05, ** p < 0.01

3J
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Table 14: Comparison of RMSEs based on EAP SEE and Empirical SEE with Observed RMSE.

Prior Distribution

Latent 6 Test Quadrature Normal Uniform
Distribution Length Points? Empb EAP  Observed Empb EAP  Observed
Bimodal 61 10 0.249 0.162 0.282 0.264 0.177 0.293
2 *Vtest length  0.227  0.225  0.235 0.243  0.234  0.246
80 0.232 0.239 0.238 0.247 0.246  0.247
122 10 0.203 0.095 0.265 0.210 0.092 0.267
2 *Vtest length 0.166 0.167 0.169 0.172 0.170 0.173
80 0.169 0.171 0.171 0.174 0.174 0.174
Normal 61 10 0.302 0.155 0.352 0.314 0.167 0.361
2 *Vtest length 0.249  0.224  0.258 0.263 0.234 0.270
80 0.234 0.240 0.239 0.250 0.248 0.250
122 10 0.236 0.082 . 0.328 0.240 0.084 0.330
2 *\test length 0.178 0.166 0.183 0.184 0.169 0.187
80 0.170 0.172 0.172 0.176 0.175 0.176
Positive 61 10 0.350 0.167 0.400 0.358 0.173 0.410
Skew 2 *Vtest length 0.264 0.223 0.272 0.276 0.232 0.284
80 0.234 0.239 0.237 0.249  0.247 0.249
122 10 0.278 - 0.106 0.379 0.281 0.104 0.382
2 *Vtest length 0.176 0.162 0.180 - 0.181 0.166 0.185
80 0.170 0.171 0.171 0.175 0.174 0.175
Uniform 61 10 0.276 0.204 0.311 0.303 0.224 0.321
2 *\test length 0.246 0.245 0.267 0.272 0.259 0.275
80 0.240 0.250 0.261 0.266 0.263 0.267
122 10 0.234 0.121 0.280 0.248 0.130 0.284
2*Vtest length 0.180 0.178 0.188 0.190 0.183 0.192
80 0.177 0.181 0.185 0.187 0.186 0.188

3jength= tést length; PEmp=Empirical
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Figure Captions

Figure la. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points
Interaction for Bimodal 6 distribution 61-item test length.

Figure 1b. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points
Interaction for Bimodal 6 distribution for 122-item test length.

Figure lc. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points
Interaction for Normal 6 distribution 61-item test length.

Figure 1d. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points
Interaction for Normal 6 distribution for 122-item test length.

Figure le.- Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points
Interaction for Positive Skew 6 distribution for 6l-item test length.

Figure 1f, Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points
Interaction for Positive Skew 6 distribution for 122-item test length.

Figure 1g. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points
Interaction for Uniform 8 distribution 61-item test length.

Figure 1h. Mean SEEs for Test Length X Prior Distribution X Number of Quadrature Points

Interaction for Uniform 6 distribution for 122-item test length.
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